COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 - 3:45 Building: Morrill2 Room: 222

Topic 11.0: Classification
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
11.0 Classification.ipynb

Regression and Classification (Review)

* Within supervised learning, recall that a data set is a set of input-
output pairs (X, Y).
* Regression: Y is a continuous number.
e Multivariate Regression: Y is avector. Thatis,Y € R™ andm > 1.

* Classification: Y is categorical (mapped to an integer).
 Binary Classification: Y € {0,1}orY € {—1,1}.
* Multi-Class Classification: Y € {0,1, ..., k}.

Regression = Classification

* Two changes for parametric methods:

1. Change the parametric model so that it outputs a discrete label as a
prediction rather than a number

2. Select aloss function that is appropriate for classification tasks

* Note: Techniques differ for non-parametric methods
* E.g., we discussed nearest neighbor (and variants) for classification

* E.g., there are other custom non-parametric methods for classification
like decision trees, which are beyond the scope of this course.

* Terminology: Each possible value of the label is called a class

Parametric models for classification

* Assume m classes (possible values of the label)
* Change parametric model to have m outputs rather than one.

* Deterministic:
e Class with the highest outputis the predicted class.
 Simple and effective
* Gradient of the loss function is typically zero, making this impractical for
training.

* Stochastic:
* The m outputs are converted to a probability distribution over the classes, and
the label is sampled from this distribution.
* The larger the output, the higher the probability of the class being selected

Stochastic Models: Softmax

* The softmax function converts the m outputs to a distribution
over the m class values.

* Let outy, ..., out,, be the model outputs.

* Probabilities cannot be negative, so convert each output to a
positive value:

outy, ..., out,, = et . eOUtm

* A probability distribution must sum to one, so divide each by the
sum:

out; outs out,

€ € €

m Dlltg-)] m . y B, m
k=1 € " k=1 € k=1

eouty)

Stochastic Models: Softmax

. eoutg

PI‘(i ?}) — Z?kn—l eouty, |

Binary Classification

» Special case where Y; € {0,1}orY; € {—1,1}

* Typically 1 is called the “positive class”

 Parametric models need only have one output, notm = 2
* This output encodes the probability of the positive class.
* The probability of the negative class is 1 — Pr(positive class).

* The output of the model must be scaled to [0,1].
* This can be done using the logistic function (sigmoid):

A

Pr(Y; = 1) = o(outy),

1
1+e

where o(z) = , and

Loss Functions for Classification

* There are many loss functions for classification.
* You can make your own that is tailored to your problem!

* Cross-Entropy Loss (log loss) is the most common.

Cross-Entropy Loss(w, D) Z In (Pr — Y))

1, : . . :
* The — 18 sometimes omitted (it makes no difference).

Logistic Regression

* Logistic regression uses the logistic model or logit model
* Essentially a linear parametric model for classification

. _— o(w-pX))

1 4+ e wé(Xi)

Pr(Y; = 1|X;) =

* Use cross-entropy loss
* Equivalent to maximizing the “likelihood” of the data given the model.

Cross-Entropy Loss(w, D) Z In (Pr — Y))

Stochastic =2 Deterministic Models

* During training often models are viewed as stochastic (minimizing
cross-entropy loss).

* If the modelis highly confident of the class for an input, the output
for that class will be come large

* No matter how large it is, the resulting probability of the label will not be 1
1
1+ e—wd(X;)
* To enable models to make deterministic predictions, often models
are evaluated (and then deployed to make predictions for new

data) as deterministic models, even if they are trained as
stochastic models.

Pr(Y; = 1|X;) =

Example: Iris Data (nothing new!)

Load the Iris dataset
iris = load_iris()

X = iris.data

y = iris.target

Convert to PyTorch tensors
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.long) # NOTE: The labels are now integers

Train/test split
X_train, X test, y train, y test = train test split(X tensor, y tensor, test size=0.5, random_state=42)

Create ANN model (3 classes, 3 outputs!)

Define the ANN model
class ANN(nn.Module):
def init (self):
super(ANN, self). init ()
self.fcl = nn.Linear(4, 10) # 4 input features, 10 hidden nodes

self.fc2 = nn.Linear(10,|3) # 3 output classes NOTE: One output per class

def forward(self, x):
X = torch.relu(self.fcl(x))
X = self.fc2(x)
return x

Prepare for Training (select classification loss!)

model = ANN()

Define loss function and optimizer
criterion = nn.CrossEntropylLoss() # NOTE: We select a classification loss
optimizer = optim.Adam(model.parameters(), lr=0.001)

Tralning the model
epochs = 10000
train_losses = []
test losses = []

Train (nothing new!)

for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, y train)
loss.backward()
optimizer.step()
train_losses.append(loss.item())

Evaluation step on testing set

with torch.no_grad():
test outputs = model (X test)
test loss = criterion(test outputs, y test)
test losses.append(test_loss.item())

print(f'Epoch {epoch+l1l}/{epochs}, Training Loss: {loss.item()}, Test Loss: {test loss.item()}')

Plot train/test loss (nothing new!)

Plotting the training and testing losses over epochs
plt.plot(range(epochs), train_losses, label='Training Loss')
plt.plot(range(epochs), test losses, label='Testing Loss')
plt.xlabel('Epochs")

plt.ylabel('Loss"')

plt.title('Training and Testing Loss Over Epochs')
plt.legend()

plt.show()

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

1/10000,
2/10000,
3/10000,
4/10000,
5/10000,
6/10000,
7/10000),
8/10000,
9/10000,

10/10000,
11/10000,
12/10000,
13/10000,
14/10000,
15/10000,
16/10000,
17/10000,
18/10000,
19/10000,
20/10000,
21/10000,
22/10000,
23/10000,
24 /10000,
25/10000,

Training
Training
Training
Training
Training
Training
Training
Training
Training

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

R R R R R R R R R

.290357232093811, Test Loss:
.2780585289001465,

1.2853983211517334

Test Loss: 1.1973154544830322

.2661762237548828, Test Loss: 1.1896122694815503
.2547130584716797, Test Loss: 1.1822878122329712

.243670105934143, Test Loss:
.2330485582351685,

1.1753385066986084

Test Loss: 1.1687607765197754

.22284734249115, Test Loss: 1.1625487804412842
.2130643129348755, Test Loss: 1.1566953659057617

.2036962509155273, Test Loss: 1.151192307472229
.1947381496429443, Test Loss: 1.1460297107696533
.1861834526062012, Test Loss: 1.1411958932876587
.1780245304107666, Test Loss: 1.136678695678711
.1702523231506348, Test Loss: 1.132463812828064
.1628566980361938, Test Loss: 1.1285368204116821
.155826210975647, Test Loss: 1.1248811483383179
.149147868156433, Test Loss: 1.1214805841445923

B R R R R R R RRBRRBRRRBRRBRRBR

9997/10000, Training Loss:
9998/10000, Training Loss:
9999/10000, Training Loss:

10000/10000, Training Loss:

1.1183172464370728
1.1153732538223267
1.1126306056976318

.1428083181381226, Test Loss:
.1367932558059692, Test Loss:
.131087303161621, Test Loss:

.1256749629974365, Test Loss: 1.110071063041687
.1205400228500366, Test Loss: 1.1076765060424805
.1156669855117798, Test Loss: 1.1054294109344482
.1110390424728394, Test Loss: 1.103312373161316
.1066404581069946, Test Loss: 1.1013092954689941

.102455735206604, Test Loss: 1.0994044542312622

©.007228388916701078, Test Loss: ©.14779852330684662
©.007248805370181799, Test Loss: ©.14795559644699097
©.007262388709932566, Test Loss: ©.1473187506198883

0.1468295454978943

0.0072497655637562275, Test Loss:

Loss

Training and Testing Loss Over Epochs

1.2 -

1.0 -

0.8 -

0.6 1

0.4 -

0.2 -

0.0 -

—— Training Loss
—— Testing Loss

|
2000

|
4000

Epochs

|
6000

I I
8000 10000

Over-fitting

* We will use early stopping, stopping after 3,000 epochs.

* Note: Ideally, we would use a validation set to determine when to
stop rather than the actual test error.

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

1/3000,
2/3000,
3/3000,
4/3000,
5/3000,
6/3000,
7/3000,
8/3000,
9/3000,
10/3000,
11/3000,
12/3000,
13/3000,
14/3000,
15/3000,
16/3000,
17/3000,
18/3000,
19/3000,
20/3000,
21/3000,
22/3000,
23/3000,
24/3000,
25/3000,

2997/3000,
2998/3000,
2999/3000

3000/3000)

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

P R R R PR R R BRP

.2640759944915771,
.2523120641708374,
.2410619258880615,
.2302714586257935,
.2199515104293823,

Test
Test
Test
Test
Test

Loss:
Loss:
Loss:
Loss:
Loss:

.210060477256775, Test Loss:

.2006133794784546,
.1915860176086426,
.1829493045806885,
.1747429370880127, Test Loss:
.1669117212295532, Test Loss:
.1594367027282715, Test Loss:

R R R R RPRPRRPRRRRPLRRRRRRPR

Training Loss:
Training Loss:
Training Loss:
Training Loss:

Test Loss:
Test Loss:
Test Loss:

.27169930934906
.2588136196136475
.246541976928711
.234955906867981
.224029541015625
1.2137163877487183
1.2039904594421387
1.1948440074920654
1.1862380504608154
1.178145408630371
1.1705280542373657
1.163350224454934

R R R R R

.1523357629776, Test Loss: 1.1565824747085571

.145584225654602, Test Loss:

.1391065120697021, Test Loss:
.1328951120376587, Test Loss:
.1269614696502686, Test Loss:

.121305227279663, Test Loss:

.1158807277679443, Test Loss:
.1106503009796143, Test Loss:
.1056286096572876, Test Loss:

.100834846496582, Test Loss:

.0962785482406616, Test Loss:
.©0920391082763672, Test Loss:
.0880424976348877, Test Loss:

©.047/53931611776352,
©0.04752859100699425,
©.047/51782864332199,
0.04750705510377884,

Test Loss:
Test Loss:
Test Loss:
Test Loss:

1.1501802206039429
1.1441161632537842
1.1383739709854126
1.1329452991485596

1.1278512477874756
1.1230573654174865
1.1185215711593628
1.114198923110962

1.1101927757263184
1.1065083742141724
1.1030521392822266
1.899786400794983

©0.06095428392291069
©0.06095632538199425
©.060895853075385094
©.06096077710390091

Loss

Training and Testing Loss Over Epochs

1.2 1

1.0 +

0.8

0.6

0.4 1

0.2

0.0 -

—— Training Loss
—— Testing Loss

|
500

|
1000

|
1500
Epochs

|
2000

| |
2500 3000

Is the model good?

* We have achieved a cross-entropy loss of roughly 0.06.
* |[sthat good?

* Other evaluation metrics are often used to determine the quality
of a mode.

Evaluation Metric: Accuracy

The accuracy is the proportion of correct predictions to the total number of predictions:

number of correct predictions

aCCuracCy — .
total number of predictions
¢ While relatively Simple, # Switch model to evaluation mode
model.eval()
accuracy can be
. . . # Calculate the number of correct predictions
mISleadlng If the ClaSS with topch.no_grad():
: : : : . outputs = model(X_test)
dIStrIbUtlon IS Imbalanced’ _, predicted = torch.max(outputs.data, 1)
total = y_test.size(9)
Empirical probabilities of labels in the test set: correct = (predicted == y_test).sum().item()
Label ©: ©.39
Label 1: ©.31 # Calculate accuracy
Label 2: 9.31 ac?uracy = 100 * correct / total
. . print(f'Accuracy on the test set: {accuracy:.2f}%"')
* Inthis case, 96% accuracy is oo
decent!

Accuracy on the test set: 96.00%

Evaluation Metric: Confusion Matrix

* Accuracy doesn’t provide information about what kinds of errors
are common

* Which classes are often confused?

* The confusion matrix provides this information. It is a matrix with
one row per class and one column per class

* The (i, j))™ entry holds the probability that a row with actual class i is
classified as classj.

* [n some cases the matrix reports the number of errors of each type, rather
than the estimated probability.

Confusion Matrix

Get predictions — .
with torch.no_grad(): Deterministic model for evaluation

outputs = model(X_test)
_, predicted = torch.max(outputs, 1)

confusion matrix comes from scikit-learn

Compute the confusi 1X
cm = confusion _matrix(y_test.numpy(), predicted.numpy())

Plotting the confusion matrix

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt="g', cmap='Blues', xticklabels=iris.target names, yticklabels=iris.target names
plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.title('Confusion Matrix')

plt.show()

Our model tends to
misclassify “virginica”
iris plants as
“versicolor” iris plants.

True Labels

sefosa

versicolor

virginica

setosa

Confusion Matrix

|
versicolor

Predicted Labels

virginica

25

20

15

- 10

Evaluation Metric: Precision, Recall, and F1 Score

* For binary classification tasks, statistics like precision, recall,
and the F1 score are often used to evaluate models.

* Note: These are often used even when the loss function used in training
measures something else, like cross-entropy loss.

* These metrics are expressed in terms of the following statistics:

1. True Positive (TP): The number of points (rows) with label 1 and where the model predicted 1.
2. False Positive (FP): The number of points (rows) with label 0, but where the model predicted 1.
3. False Negative (FN): The number of points (rows) with label 1, but where the model predicted 0.
4. True Negative (TN): The number of points (rows) with label 0 and where the model predicted 0.

Deterministic Classifiers

Precision measures the ratio of the correctly predicted positive labels to the total predicted positives. That is:

TP

Precision = TP - FP

Deterministic Classifiers

Precision measures the ratio of the correctly predicted positive labels to the total predicted positives. That is:

TP

Precision = TP - FP

Recall measures the ratio of the correctly predicted positive labels to the total number of positives. That is:

TP
TP + FN'

Recall =

Stochastic Classifiers
Precision = Pr(Y; = 1|Y; = 1),

Fas

Recall = Pr(Y; = 1]Y; = 1).

F1 Score

* The F; score (often written “F1 score”) combines precision and
recall:

precision - recall

F{ Score = 2 — ,
precision + recall

* This is the harmonic mean of the precision and recall
* Places more weight on low values relative to the arithmetic mean

* F1 score ranges from 0 to 1, where 1 denotes perfect precision
and recall, and 0 means that either precision or recall is zero.

Evaluation Metric: ROC

* The receiver operating characteristic (ROC) curve isa common
metric for binary classification problems.

* Assumes that the single model output is compared to a threshold.
* |[f the outputis above the threshold, the predictionis 1 (positive)
* |f the output is below the threshold, the prediction is 0 (negative)

* Tuning the threshold can adjust the tradeoff between different

types of errors
* Too many false positives = increase the threshold
* Too many false negatives > decrease the threshold

* Note: The modelis still trained using a common loss function like
cross-entropy loss!

Evaluation Metric: ROC

* The ROC curve is a plot of the false positive rate (FPR) and true
positive rate (TPR) that a model achieves when the threshold is
varied.

_ _FpP _ _ TP
FPR = 1y IPR = 5%

Example ROC Curve

I /
* Curves closer to the top left I ,ﬁr—/
corner correspond to better 0.8 - =
models.
* A classifier thatignores the g 06
inputs and outputs a uniform 2
. g — NetChop C-term 3.0
random. num.ber in [O,.l] s, L
results in a diagonal line from I ProteaSMM-i
(0,0) to (1,1)
0.2
ol T R
0 0.2 0.4 0.6 0.8 I

False positive rate

Evaluation Metric: Area Under the ROC Curve
(AUC)

* The AUC summarizes the ROC curve with a single number: The
area under the ROC curve.

* The best possible valueis 1.
* A pessimal model (one that always gets the prediction wrong)

would have an AUC of zero. T
e The random classifier achieves an AUC of 0.5 =

=

o
06—
o
£ -
§. g —— NetChop C-term 3.0
g 04 — TAP + ProteaSMM-i
= ProteaSMM-i
1 1

srating

Dodad e

youl.

	COMPSCI 389�Introduction to Machine Learning
	Note: This presentation covers (and provides additional context/information regarding)�11.0 Classification.ipynb
	Regression and Classification (Review)
	Regression  Classification
	Parametric models for classification
	Stochastic Models: Softmax
	Stochastic Models: Softmax
	Binary Classification
	Loss Functions for Classification
	Logistic Regression
	Stochastic  Deterministic Models
	Example: Iris Data (nothing new!)
	Create ANN model (3 classes, 3 outputs!)
	Prepare for Training (select classification loss!)
	Train (nothing new!)
	Plot train/test loss (nothing new!)
	Slide Number 17
	Slide Number 18
	Over-fitting
	Slide Number 20
	Slide Number 21
	Is the model good?
	Evaluation Metric: Accuracy
	Evaluation Metric: Confusion Matrix
	Confusion Matrix
	Slide Number 26
	Evaluation Metric: Precision, Recall, and F1 Score
	Deterministic Classifiers
	Deterministic Classifiers
	F1 Score
	Evaluation Metric: ROC
	Evaluation Metric: ROC
	Example ROC Curve
	Evaluation Metric: Area Under the ROC Curve (AUC)
	End

